Rechercher dans ce blog

mardi 25 septembre 2012

The recovery of magnesium oxide and hydrogen chloride from magnesium chloride brines and molten salt hydrates

Authors: de Bakker, Jan
Files in This Item:
File Mirror SizeFormat
de Bakker_Jan_S_C_201103_PhD.pdfLink3.9 MBAdobe PDF
Keywords: Extractive metallurgy
Nickel
Magnesium chloride
Molten salt hydrates
Brines
Issue Date: 2011
Series/Report no.: Canadian theses
AbstractHydrochloric acid leaching of saprolite nickel ores has been proposed as an effective means of recovering nickel and cobalt. However, the leach produces a concentrated brine of magnesium chloride which must be hydrolyzed to recover the HCl lixiviant. The processing of carnallite similarly produces a concentrated MgCl2 brine; converting this brine into HCl and MgO provides an attractive way of adding value while effectively disposing of this waste product. Direct pyrohydrolysis of magnesium chloride brines by the reaction, MgCl2,a + H2Oa  MgOs + 2HClg is energy-intensive as large volumes of water must be evaporated. The energy cost is high, and the HCl stream produced is limited to approximately 20 wt% HCl. This thesis explores alternative methods of obtaining HCl from aqueous magnesium chloride solutions. Two methods are considered: the hydrolysis, under autogenous pressure, of concentrated MgCl2 molten salt hydrates; and the precipitation of magnesium hydroxychloride compounds such as 2MgO·MgCl2·6H2O and 3MgO·MgCl2·11H2O, which are subsequently decomposed at high temperature. Considerable experimental difficulties were encountered in studying pressure hydrolysis of molten salt hydrates, despite extensive equipment modifications. Ultimately, the work moved on to precipitation and decomposition of hydroxychlorides. This was found to bear promise, and conceptual flowsheets based on these reactions are presented. A phase stability diagram giving the areas of predominance of the different hydroxychloride phases is presented, and fundamental thermochemical data are derived. The results of a kinetic study on magnesium hydroxychloride thermal decomposition are also presented.

Aucun commentaire:

Enregistrer un commentaire